05
MarData Science is being considered as one of the most liked and preferred job for all technocrats, so today we have brought this blog post that can be considered as a guide of this profession. Data Science is the best and most preferred profession that may also need a deep understanding of a few basic concepts.
In this blog post, we will provide an introduction to Data Science along with its job trends and the basic Data Science components. We will also discuss what Data Science is and who can become a data scientist? So, let us start our discussion with a brief introduction to the topic.
The term Data Science involves two mathematical terms one is mathematical statistics, and the other is data analysis. The journey of this complete profile is amazing and can be easily accomplished by technical and non-technical persons. As it is all about machine learning, so future prediction has been made possible by this as well.
As far as Data Science is concerned, then it does mean data-driven science that uses scientific methods, processes, and methods that can be used to extract some useful information either from structured or unstructured data.
Today, we will discuss these analytic processes and methods in this tutorial Guide so that you can become familiar with that.
It’s a well-known fact that data scientist must be proficient in mathematics, must be familiar with business fields and have great computer skills, but sometimes a person cannot have all skills. In such a case, teams are formed so that each team has the experts of every field. But here the fact is that you should be familiar with at least one skill.
In most of the corporates, the complete job of Data Science is divided among teams and as per their expertise, the problems are resolved. Moreover, as per the expertise, one can brush-up his appropriate skill and learn Data Science to become a scientist.
As today, there is a huge amount of data all over the internet, and companies are storing more data, so organizations analyze it and take out desired and required information from the data repositories. Processing of abundant data is one of the toughest jobs, and therefore, organizations are hiring professionals for their help.
With the help of Data Science, you can understand the customer’s behavior and know their expectations. Their feedback data can be analyzed to know the facts and their expectations. Apart from this, there can be countless benefits of Data Science. You cannot only make better and fruitful decisions but also reduce production cost and give your customer their desired product.
It basically provides the following advantages:
Data Science problems are solved by using algorithms, but here the big problem is to choose the right algorithm. There are manly below-listed problem types to be judged, and scientists have to decide which algorithm should be used for any particular type of problems:
Is this of type A or B? | Classification Algorithms are used |
Is the problem weird? | Anomaly Detection Algorithms should be Used |
How many or How Much to be Find | Use Regression Algorithms |
How to Organize this? | Use Clustering Algorithms |
What Should Next be Done? | Reinforcement Learning must be Applied |
Here, the algorithm’s selection depends on the type of problem. In the next section of this post, we will discuss each of the problems and their solution one by one:
These are those problems which have an answer either ‘Yes’ or ‘No’ or we can say in 1 or 0, e.g. if the problem is like What will you like to watch either cricket or football then you have only two options here to answer -cricket or football, and the answer cannot be basketball or badminton in any condition.
Hence, you have two options in this, but you have to answer only one like an on/off button (or toggle switch). The problems that have only two types of answers are known as 2-Class Classification problems, while if there exist more than two answers, then it is known as Multi-Class Classification problems. So, in short, we can say that such problems can be solved by using categorical algorithms.
Read: Top 5 Python Automation Testing Frameworks to Practice in 2020
You might have come across a game “odd one out,” in which you have to find the odd image or thing in the existing image.
The above image shows the “odd one out” concept. What is odd or weird in this image? Redman in the above image is the odd or an anomaly.
Such questions involve patterns that can be solved using Anomaly Detection Algorithms, when there is a break-in pattern, the algorithm flags that particular event for review. Like if there are several transactions to be analyzed, then any weird transaction can be flagged to review. As a result, security measures can be implemented properly, and human efforts can be reduced.
If there is any problem that involves mathematical calculation, then it can be solved by using regression analysis. All problems that involve numerical values and figures can be easily solved by using regression analysis.
For example, if one wants to predict the temperature of the next day or week, then the answer to this question will be a numeric value and regression analysis can help in finding the answer.
If you have some data and do not have any idea how to use it and does not make any sense, then you may think about how the problem will be solved? It can be solved by using a clustering algorithm. In these solutions, the data are grouped as per their common characteristics, and then the clusters are being formed.
You may clearly see in the above image the three different groups of clusters. Here, why I used “different groups”? Because the cluster groups can be easily differentiated because of the three different colors. Similarly, with data with any information in it, clustering algorithms try to capture the common in them and clusters them together.
When your computer has to take any decision depending on your problem, then reinforcement algorithms are being used. These algorithms are based on human psychology in which computers like to be appreciated when they are trained. Here, you do not teach computers. Instead, they take their decisions and take the appropriate action.
Data Science is a vast field, and the complete process has a few main components that we are going to discuss in our next section.
There are lots of data to be analyzed that is fed either through analytics tool or algorithms. The data is fetched by several past researches. Datasets are being formed with the help of such data and then are analyzed.
R is an open-source programming language that is used for statistical computing and graphics that is supported by the R Foundation. R studio uses this language. Mainly the language is being used for the following reasons:
R Studio can be used to analyze large datasets that can have structured and unstructured data. Such data is also known as Big Data.
Big Data is a collection of data sets that are too large and complex, so it becomes difficult to process traditional data and database management. As traditional data cannot be handled by the existing software so a new tool and language can solve it easily.
Read: A Complete Guide for Processing of Data
Hadoop framework can be used to store and process large datasets in distributed and parallel fashion. Hadoop can be used to store and process data for this; it uses HDFS and provides high availability across the distributed ecosystem. MapReduce is used to process data, and it uses the ‘map’ and ‘reduce’ processes to analyze data.
This R package is a lightweight way to be used with R. It is being used over R applications as it provides a distributed data frame to support selection, aggregation, filtering even on large datasets. Spark R is like the R language and can be used with that as well.
This is clear from the graph that job options are just the plenty for the role of data scientist and they are getting attractive salary packages too as per their skills and experience.
So, you must be pretty much sure now why learning Data Science makes sense. This is not only useful for organizations but had a prosing career choice shortly too. In the next section, we will discuss the various job roles for Data Science experts and their average salaries in Indian and the USA.
Data Science allows us to solve problems with a sequence of steps:
Step1- Collection of data
Step2- Pre-processing of the data
Step3- Analysing data
Step 4- Driving insights and generating reports
Step5- Taking insights based on decisions
Data Science is divided into four main categories, based on which Data Science tools are used.
Data Analysis | R, Spark, Python, and SaS |
Data Warehousing | Hadoop, SQL, Hive |
Data Visualization | R, Tableau, Raw |
Machine Learning | Spark, Azure ML Studio, Mahout |
Data Science is a wide concept of modern technology, and it is applicable in the wide range of platforms. Some of the primary applications of Data Science are: -
As per the research conducted by Kaggle, it is estimated that between 70% to 85% of Data Science projects fail due to either negligence or other challenges failed by Data Scientists. These challenges can be grouped into the following categories: -
Collaboration – 76%
Read: Deep Learning Interview Questions & Answers
Data - 68%
Talent – 42%
Tools – 36%
Budget – 27%
Other challenges in Data Science Technology are: -
Although there are many career tracks associated with Data Science. But here, we are going to discuss two major career tracks which you can opt for your Data Science career. But before choosing your career in Data Science, ask yourself these questions-
You can opt for several career options after choosing Python as a career track of Data Science. There are frameworks you can learn, which may help you in the advancement of your career using Python for Data Science. Some of the career paths are given below.
The candidates who have the data scientist skills can get various job titles like listed below:
As per PayScale.com average salary of data scientists in the US and India is shown below:
To take the career opportunity of Data Science, one must keep on updating his skills, and it is quite clear by the above statistics that the person having more skills will have more chances to get higher salaries. Moreover, as the chart is prepared as per skills, so the variation clearly indicated that Python and Machine Learning languages are at the top in India, and the US both.
So, here we come to the final section of our blog, and it’s very clear that Data Science can provide you with the most promising career options today. It is not that much difficult to learn Data Science, and any pre-existing skill can help you definitely.
Python and R are the two languages that are being used to analyze the data. So, by learning these languages, you can become a professional Data Scientist. K-Means, Clustering, Decision Tree, Naïve Bayes are a few of the popular algorithms used in Data Science frequently, and practical knowledge can always stand you ahead of the crowd.
Read: Introduction of Decision Trees in Machine Learning
A dynamic, highly professional, and a global online training course provider committed to propelling the next generation of technology learners with a whole new way of training experience.
AWS
DevOps
Data Science
Hadoop
Salesforce
QA
Business Analyst
MS SQL Server
Python
Artificial Intelligence
Machine Learning
Tableau
Search Posts
Trending Posts
Related Posts
Receive Latest Materials and Offers on Data Science Course
Interviews
Aman Sarvaiya
It is a comprehensive article nicely explaining everything that one beginner needs to know about data science.
Kiruthika
Very nice post here and thanks for it. Such a super content.
Yuva Rekha
Thank you for sharing this useful information!
Devi
Good Article
Neelam Naveen
As i was searching for data science i have read your article it is very good which is more informative and i would suggest you to write more articles like this. I would definitely suggest my friends to read this article.
Himanshu
Good Article
David John
Very informative article, thanks for sharing with us!
Ammu
I have learned many things from your site.
Ammu Pavan
Very good information!
Teja
Nice article! Giving best information about data science and its future.
Pavan Kalyan
This post is very useful to understand what is data science and roles .
Keerthi Vadloori
It is very useful and beneficial for career growth. Thank you!
Sanjana
Data Science is the most awaited and promising career in 21st century. Data Science course is most useful for both beginner’s and Professional who has the aspiring to Data Science.
Krishna
Awesome blog about data science. It is a valuable information keep sharing more articles
Laxmi Pratyusha
The information provided in this article very nice. The way you discussed the introduction, tools resources, careers, data science vs different technologies, and interview questions are very useful for the beginners. Try to keep posts like this.
Mahiboobasab Jilani
Very good article. Very informative!
Shan James
Nice Blog | Thank you for sharing such a wonderful information. The data that you provided in the blog is informative and effective.
Lisa Lee
Thanks for sharing the topics and concepts on data science course.
Ane Belly Liza
Thanks For sharing Good information and well explained about the basic overview of Data science. This is a good use for basic learners about course
Arohi
Such a very useful article. Very interesting to read this article. I would like to thank you for the efforts you have made for writing this awesome article.
Maneeesha
Awesome blog. I enjoyed reading your articles. This is truly a great read for me. I have bookmarked it and I am looking forward to reading new articles. Keep up the good work!
data science certification malaysia
Cool stuff you have and you keep overhaul every one of us!
Srinivas
Very nice article. Thanks for sharing !
Madhava
Very Good Information about Data Science.. Keep update the latest news.
Roja Rao
Excellent article! Very useful information for beginners
Ishan Reddy
The information you have posted is important. Thankful for sharing.