Grab Deal : Flat 30% off on live classes + 2 free self-paced courses! - SCHEDULE CALL

- Python Blogs -

How to Perform Data Wrangling in Python?

In the era of artificial intelligence and analytics, data has taken the driving seat of almost all the industries. From Zomato to Google all are using data to improve their business models at the same time cater in a customer-specific way to their clientele. 

In this blog, we will be first of all talking about the data followed by checking a dataset which will comprise of numerous steps starting with start with checking of inconsistent values followed by checking & removing duplicates and ending on creating labels for a supervised learning-based model. Most prominently, in this blog, we will be talking about the manipulating data using python.

Table of content

Data – The blood for analytic industry in 21st century

Data is the collection of facts and figures. However, in its raw form, data most of the time is not suitable for further processing. In other words, most of the time, there is a requirement for changing the data into another more suitable format. The process of changing and mapping the data into a more suitable form is called data wrangling, which is also known by the name of data munging.Data – The blood for analytic industry in 21st century

Almost anybody who deals with data in their daily life will agree that data is dirty and cannot be directly used to infer anything meaningful. Thus, it becomes essential to clean it i.e. to perform data wrangling. It is an essential part of data science. This is an example we are present the basics of data wrangling using pandas in python using the forest fire in Brazil dataset which is available at

Data Wrangling using Pandas:

Pandas is a software library for python which was originally released in 2008 by Wes McKinney. It is widely used for data analysis and manipulation. In this blog, data munging will be performed over a spreadsheet in csv format. Here, pandas data frames are 2-D data structure comprising heterogeneous data in rows and columns which is somewhat similar to a table. Thus, can be easily manipulated in python over rows and columns.

In this blog, forest fire in brazil dataset as available on kaggle, which open for use is used.

Read: An Introduction to Time Series Analysis with Python

Checking for inconsistent values in Dataset :

Any dataset can have absent values which are usually represented by a NAN at the place of value. Here it’s important to mention that NAN, which stands for not a number, represents a null value. 

Let us query our dataset for null values. (The dataset is having an encoding of cp1252. The default encoding is utf-8.). 

>>Import pandas as pd

As seen in the Figure 1, As seen in the above query, there is no missing value in this dataset. But, if there are missing values, they can be dropped or other statistical measures can be used to interpolate or extrapolate them.

Finding the duplicate values

Huge datasets may have duplicate values in them making them introduce bias in the final output. Thus, it is important to remove the duplicates. Before we can drop the duplicate values from this dataset, it is important to know that there are any duplicate values in the data set.

To do this, one should first find the count of columns and this can be done by using the describe() function as shown in fig.2 :

>> x.describe()

Finding the duplicate values Data Wrangling
Figure 2: Describe

Read: Python Skills for Staying Ahead in a Rapidly-Changing Field

This summarizes most of the statistical features of the dataset under consideration. Now, nunique() can be use to find out the number of unique values in the dataset per column.


Data Wrangling unique number

Figure 3:

As evident from figure 3, there are a total of 6454 values, but that does not correspond to the unique values in any reported figure. Thus, few data points might be repeated in the dataset. To segregate the data year wise we can do as follow:


 How to Perform Data Wrangling in Python? table                  
Figure 4:duplicate results

As can be seen in Fig. 4, all the dataset is unique because it is presented in a mapped form. Thus, there are no duplicate values in this dataset. But, for demonstration the instances where year is repeated will be removed from the dataset.

Read: Python Developer Salary for Beginners & Seniors - Know How Much to Ask!
Repeat_x = x.groupby(by = ‘year’).size().sort_values(ascending = False)
Filtered_x = repeat_x[repeat_x >2].to_frame().reset_index()
Filtered_x = x[~x.year.isin(filtered_x.year)]

These commands will remove places where the year is repeated more than twice. This can be made more specific with the use of conjunctions. Negation ‘~’ needs to be used or all else instances where the occurrence is more than twice will be returned. The last step in the above process is known as data filtration and is used to remove or add data points as per requirements.

data science Quiz

Creating Labels for the data points:

The basic purpose of the whole of data wrangling is to give the dataset a usable form, which can be used in further analysis or implement machine learning models. Thus, this step forms the most important part of data wrangling. Before this step, checking the parameters and shape of data is required. In this step, the dataset will be mapped for the binary supervised learning-based model i.e. every data point in the dataset will be mapped to 1, if forest-fire has taken place or else it will be mapped to 0

>>mapping = [] #creating an empty list

>> for I in range(len(x)):

>>      if(x.loc[i,”number”] !=0:

>>              mapping.append(1) #appending labels

>>       else:

>>               mapping.append(0)

>>x['label'] = mapping

>>export_csv = x.to_csv (r'd:\amazon_mapped.csv', index = None, header=True)

To map the data, an array named mapping is created. Now, the number column in original data contains the number of times fire has occurred in that area. To make a binary classifier, we will restrict ourselves to whether a fire has occurred or not. To do this, we will first make the corresponding entry in the mapping array and then, initialize this array to the data frame. Once, entry to a data frame is done. We can export this to the desired location as done in the last line of command.


In this blog, the basics of data wrangling in python using pandas have been discussed and the dataset has been labelled for training of binary classifier. This python example depicts the basic steps and can be enhanced for more complex use in the domain of data science. In other words, a basic data wrangling project can be done using this. Please leave query and comments in the comment section.

Read: Python Requests Tutorial Guide for Beginner

fbicons FaceBook twitterTwitter lingedinLinkedIn pinterest Pinterest emailEmail


    JanBask Training

    A dynamic, highly professional, and a global online training course provider committed to propelling the next generation of technology learners with a whole new way of training experience.

  • fb-15
  • twitter-15
  • linkedin-15


Trending Courses

Cyber Security Course

Cyber Security

  • Introduction to cybersecurity
  • Cryptography and Secure Communication 
  • Cloud Computing Architectural Framework
  • Security Architectures and Models
Cyber Security Course

Upcoming Class

16 days 05 Jul 2024

QA Course


  • Introduction and Software Testing
  • Software Test Life Cycle
  • Automation Testing and API Testing
  • Selenium framework development using Testing
QA Course

Upcoming Class

8 days 27 Jun 2024

Salesforce Course


  • Salesforce Configuration Introduction
  • Security & Automation Process
  • Sales & Service Cloud
  • Apex Programming, SOQL & SOSL
Salesforce Course

Upcoming Class

7 days 26 Jun 2024

Business Analyst Course

Business Analyst

  • BA & Stakeholders Overview
  • BPMN, Requirement Elicitation
  • BA Tools & Design Documents
  • Enterprise Analysis, Agile & Scrum
Business Analyst Course

Upcoming Class

2 days 21 Jun 2024

MS SQL Server Course

MS SQL Server

  • Introduction & Database Query
  • Programming, Indexes & System Functions
  • SSIS Package Development Procedures
  • SSRS Report Design
MS SQL Server Course

Upcoming Class

9 days 28 Jun 2024

Data Science Course

Data Science

  • Data Science Introduction
  • Hadoop and Spark Overview
  • Python & Intro to R Programming
  • Machine Learning
Data Science Course

Upcoming Class

2 days 21 Jun 2024

DevOps Course


  • Intro to DevOps
  • GIT and Maven
  • Jenkins & Ansible
  • Docker and Cloud Computing
DevOps Course

Upcoming Class

5 days 24 Jun 2024

Hadoop Course


  • Architecture, HDFS & MapReduce
  • Unix Shell & Apache Pig Installation
  • HIVE Installation & User-Defined Functions
  • SQOOP & Hbase Installation
Hadoop Course

Upcoming Class

2 days 21 Jun 2024

Python Course


  • Features of Python
  • Python Editors and IDEs
  • Data types and Variables
  • Python File Operation
Python Course

Upcoming Class

17 days 06 Jul 2024

Artificial Intelligence Course

Artificial Intelligence

  • Components of AI
  • Categories of Machine Learning
  • Recurrent Neural Networks
  • Recurrent Neural Networks
Artificial Intelligence Course

Upcoming Class

10 days 29 Jun 2024

Machine Learning Course

Machine Learning

  • Introduction to Machine Learning & Python
  • Machine Learning: Supervised Learning
  • Machine Learning: Unsupervised Learning
Machine Learning Course

Upcoming Class

23 days 12 Jul 2024

 Tableau Course


  • Introduction to Tableau Desktop
  • Data Transformation Methods
  • Configuring tableau server
  • Integration with R & Hadoop
 Tableau Course

Upcoming Class

2 days 21 Jun 2024

Search Posts


Receive Latest Materials and Offers on Python Course