Diwali Deal : Flat 20% off + 2 free self-paced courses + Free Ebook + $200 Voucher  - SCHEDULE CALL

- Machine Learning Blogs -

What are the Roles and Responsibilities of Machine Learning Engineer?

Introduction

The most recent job market phenomenon is the significant need for machine learning engineers, which is expanding at an exponential rate. Did you know that jobs in artificial intelligence and machine learning are growing at a rate of roughly 75% over the past four years? 

The role of Machine Learning engineers is the most popular among these massive demands for machine learning jobs, but many new job roles have emerged, including AI developer, data scientist, software data engineer, and so on. The rapid appearance of new titles underlines the fact that Machine Learning has risen to the top of the priority list.

In this article, we'll provide you an overview of the machine learning engineer job description, with a focus on the roles and responsibilities of machine learning engineers. In addition, we've compiled for our readers what the industry looks for in an ML engineer, as well as the crucial points to keep in mind while planning to become an ML engineer. 

Let's take a closer look:

What is Machine Learning?

Self-running software for predictive model automation is the focus of Machine Learning Engineers.

In such models, each time the algorithm executes a function, the findings are used to improve the accuracy of subsequent operations. The software's "learning" process is made up of this. Recommendation engines like Spotify, Netflix, and Amazon are some of the most well-known instances of intelligent software.

Machine learning is an area of artificial intelligence (AI) and computer science that focuses on using data and algorithms to influence the way humans learn, with the goal of steadily improving accuracy. Machine learning is a crucial part of the rapidly expanding discipline of data science. Algorithms are trained to generate classifications or predictions using statistical approaches uncovering great data insights which lead to informed decision-making. 

Machine Learning Engineer Key Responsibilities

Among the most important roles and responsibilities of a Machine Learning Engineer are:

  • Analyze data statistically
  • Test results to be fine-tuned
  • To assess machine learning algorithms’ problem-solving skills and applications and rate them according to their likelihood of success.
  • Machine learning engineer roles include working on building frameworks
  • Study data science prototypes
  • Experimenting with machine learning and putting it to the test
  • Machine learning engineer job duties involve creating programs for machine learning
  • Adapting deep learning systems to a variety of use cases depending on business requirements
  • Machine learning engineer job description states appropriate AI/ML algorithms must be implemented.
  • Extending and improving existing machine learning frameworks and libraries is a part of the roles and responsibilities of machine learning engineers.
  • Machine Learning systems and schemes must be designed and developed.
  • Using test findings, undertake statistical analysis and fine-tune models.
  • To locate available datasets for training purposes on the internet.
  • Training and retraining machine learning systems and models as needed is also a part of the machine learning engineer job description. 
  • To create Machine Learning apps that meet the needs of customers and clients.
  • To investigate, test, and deploy appropriate machine learning algorithms and tools.
  • To gain a better knowledge and identification of data by exploring and visualizing it.

Machine Learning Jobs Skill Requirements

As a candidate for a Machine Learning Engineer role and to manage the Machine Learning Engineer job responsibilities, the industry looks for the following qualities.

Technical Skills

  • Ability to write Java and Python code
  • Basic math and probability skills are required.
  • Algorithms and statistics are well-understood
  • Data modeling, software architecture, and data structures are all skills that may be learned.
  • Robust data modeling and data architecture skills.
  • Programming experience in Python, R, Java, C++, etc.
  • Knowledge of Big Data frameworks like Hadoop, Spark, Pig, Hive, Flume, etc.
  • Experience in working with ML frameworks like TensorFlow and Keras.
  • Experience in working with various ML libraries and packages like Scikit learn, Theano, Tensorflow, Matplotlib, Caffe, etc.
  • Working on frameworks 

Soft-Skills

  • Good communication skills
  • Working in teams 
  • Strong written and verbal communications
  • Excellent interpersonal and collaboration skills.

Machine Learning Engineer Job Descriptions at Microsoft

Salary of A Machine Learning Engineer

ML

According to a report published by Gartner in 2020, there has been a tremendous expansion in AI, which has resulted in a steep increase in Machine Learning Jobs of about 2.3 million.  According to the Global Machine Learning Market projection, ML and AI would increase from $1.6 billion to over $4 billion by 2025. As a result, the compounded yearly growth rate over more than eight years is close to 50%.

All of these numbers demonstrate the significance of Machine Learning Jobs and their predictable salary increases.

  • According to prominent job portals throughout the world, machine learning engineer salaries range from $84,000 to $163,000 per year. 
  • The average, on the other hand, is around $112691
  • Professionals with close to 1 to 4 years of experience in the sector can earn an entry-level machine learning engineer salary of roughly $70-97k on average.
  • Professionals with more than a decade of experience fall into the senior machine learning engineer compensation category. The average annual salary is around $132,500
  • When you factor in competitive bonuses and profit-sharing, you're looking at a figure of around $ 181,000 each year.

Which top Giants are Hiring Machine Learning Engineers?

Apple, Facebook, Amazon, J.P. Morgan Chase & Co. (JPMCC), Accenture, Ericsson, Microsoft, C.H. Robinson, Intel, LinkedIn, Spotify, Neustar, and many others are among the top Giants. These companies pay around approx @138000 to $170000 as per the experience, certification, and skill-sets.

Why is the demand for Machine Learning Engineers increasing?

Why is the demand for Machine Learning Engineers increasing?

The growing need for machine learning in various industrial sectors to improve customer experience and get a competitive advantage in the industry propels the global machine learning market forward. The machine learning engineer job description has much to deliver.

The rapid adoption of artificial intelligence in a variety of industries, including automotive, healthcare, financial services, government, and others, has resulted in a surge in demand for machine learning services around the world. The growth of machine learning applications in the manufacturing business has created many opportunities for machine learning service providers, culminating in the growth of ML. Here are some interesting facts:

  • According to The International Data Corporation, the average investment in AI and machine learning would rise from $12 billion to $57.6 billion in just four years, from 2017 to 2021.
  • Between 2017 and 2024, the global machine learning market is predicted to increase at a CAGR of 44.06 percent, from $1.58 billion in 2017 to $20.83 billion in 2024.
  • Netflix consumers choose 75 percent of the films recommended to them by the company's machine learning algorithms.
  • The global Machine Learning (ML) market is expected to develop at a CAGR of 42.8 percent from 2018 to 2024, reaching $30.6 billion in four years.
  • Machine learning skills are in high demand on LinkedIn in the United States, indicating the technology's expanding influence across all industries. According to LinkedIn, 44,864 positions in the United States need machine learning today, with 98,371 globally.
  • AI and machine learning are revolutionizing consumer engagement, according to 83 percent of IT leaders, and 69% are transforming their businesses. According to  79% of respondents, AI will assist their company in identifying external and internal security issues. 
  • Annual global AI software sales are expected to grow at a CAGR of 43.41 percent from $10.1 billion in 2018 to $126.0 billion in 2025, according to Tractica.
  • The global machine learning market is expected to increase at a CAGR of 43%, from $7.3 billion in 2020 to $30.6 billion in 2024. A substantial portion of market growth is expected to come from AI-based CPUs, integrated memory, and networking systems. 
  • The three most common ML use cases are lowering company costs (38%), producing consumer insights and information (37%), and improving customer experiences. According to Algorithmia's recent machine learning survey, the top five use cases for ML in firms with 10,000 or more people are: cost reduction, internal process automation, improving customer experience, and creating new revenue. Source: Algorithmia, 2020 state of enterprise machine learning.

How to become a Machine Learning Engineer?

Machine learning engineering is a novel and rapidly developing field, and the machine learning engineer job description is quite challenging. Depending on your educational background, professional certification in machine learning, technical talents, and areas of interest, there are a variety of ways to break into the profession.

The steps below outline the career path for becoming a Machine Learning Engineer

1. Recognize your ultimate goal. Before deciding whether to pursue a bachelor's or master's degree or enroll in an online boot camp, you should have a clear idea of what you want to get out of a career in machine learning engineering so you can choose the best path for you. 

2. A bachelor's degree in computer science, mathematics, statistics, or a related discipline is required for some machine learning jobs. Others, on the other hand, will demand you to get a master's or doctoral degree. Others will evaluate your qualifications based on your work experience and skill transferability. In either case, preparing for a job in machine learning engineering necessitates a lot of effort and dedication, so it's critical to know what you want to achieve.

3. Learn the fundamentals of software engineering. Machine learning engineers develop the code that runs systems and programs, so they must be well-versed in a variety of programming languages (the most common being Python, Java, and C++) as well as fundamental computer science in order to create and deploy software.

4. Learn the principles of data science. Machine learning engineers have a lot in common with data scientists, which is one of the things that sets them apart from traditional software engineers. Anyone interested in machine learning engineering should know how to collect, clean, optimize, and query data sets, as well as grasp data models and bridge the findings from different sources.

5. Learn how to use the tools and understand the ideas. It is beneficial to familiarise oneself with commonly used machine learning architecture and concepts and learning programming languages. For example, TensorFlow, Spark, and Hadoop, R Programming are likely to be used by machine learning experts working with AI and deep learning. Engineers in machine learning have been charged with.

6. Participate in real-world initiatives. Understanding how to apply your theoretical knowledge to real-world activities and assignments is the most critical aspect of being a machine learning engineer. Completing a machine learning engineering project from start to finish and documenting it in a portfolio will demonstrate to potential employers your ability to comprehend and deliver at each stage of the project.

7. Take an online course, candidates frequently turn to an online course to learn ML engineering in a thorough and supported manner.

Eligibility To Become A Machine Learning Engineer

  • Preferred degree in Computer Science, Mathematics or similar courses or fields 
  • A bachelor's degree in computer science, mathematics, or a related discipline is preferred.
  • A master's degree in computer science, mathematics, statistics, or a related field is required.
  • Math and statistics are advanced skills (linear algebra, calculus, Bayesian statistics, mean, median, variance, etc.)

Essential Tips To Crack Your Machine Learning Interview

Consider these critical tips  to nail your machine learning engineer interview:

  • Consider taking an online course. While some machine learning engineers are able to complete these stages on their own, many others require further assistance. As a result, candidates seeking a thorough and supported approach to studying ML engineering frequently resort to online courses.
  • You may be questioned about your theoretical knowledge of machine learning, data engineering, and ML product design.
  • Interviews are conducted by companies hiring for machine learning positions to examine individual competencies in many areas. The majority of ML interview questions fall into one of these four groups.
  • Machine learning piques your interest: Industry trends and your vision for future machine learning components
  • Algorithms and machine learning theory: How do they compare, and how can they be accurately measured?
  • Questions about a specific industry or product: How do you apply broad machine learning skills to specific products?
  • Skills in programming: Python or domain-specific languages are usually used.
  • System design is now a big part of ML interview questions. Candidates are given open-ended ML issues and are asked to develop an end-to-end machine learning system in the ML system design interview. 

Areas of expertise of an ideal ML engineer

You need to have special expertise in all the below fields to have a phenomenal career trajectory as an ML engineer: 

Applied Mathematics

A machine learning engineer should have an expertise in Applied Mathematics. It has many uses in machine learning. You can apply various formulas of mathematics to select the correct algorithm for your data and to set the parameters also. Some of the important areas of skills in mathematics required for a machine learning engineer are linear algebra, probability, statistics, calculus distribution, binomial etc.

Computer science fundamentals

It is another important requirement for a good machine learning engineer. Machine learning engineers should have concepts of data structure, algorithm, space and time complexity clear. 

Machine learning algorithm

It is a very important skill to know the common machine learning algorithm so that you can apply it well. The algorithms of machine learning are divided into three parts- supervised, unsupervised and reinforcement machine learning algorithm.

Data Modelling and evaluation

As a machine learning engineer, you must have skills in data Modelling and evaluation. The data is your only bread and butter. You need to know how to deal with it. Data learning focuses on understanding the underlying structure of data and then finding patterns that are not obvious to the naked eye. 

You can also evaluate data using a mathematical formula and algorithm which is suitable for the data. You should have a sound knowledge of algorithms to give your best contribution to data Modeling and evaluation.

Neutral network

Newton network is a pivotal part of the machine learning engineering course. It focuses on parallel and sequential computation to analyse and learn different types of data. You must know the core fundamentals to have a flourishing career as a machine learning engineer.

Communication skills

It is a soft skill that is considered to play an instrumental role in a machine learning engineer's career. This soft skill brings a world of difference to your career trajectory. An ML engineer with sound communication skills can understand the data and the Insight and convey them to your non-technical team.

If you have expertise in all these fields, the sky is your limit in this profession!

Conclusion

Companies will undoubtedly boost the demand for Machine Learning expert positions, and machine learning engineer job descriptions will expand as technology such as machine learning rewrites the profit-making scenario.

You need to increase your talents to meet the mandatory component of the machine learning engineer job description. The road to success is straightforward; you may only need to improve your current skill set. There are numerous Machine Learning online courses available around the world. You may consider taking a look at the Janbask Machine Learning Course, and the course roadmap to becoming an  ML engineer. 


     user

    Jyotika Prasad

    Through market research and a deep understanding of products and services, Jyotika has been translating complex product information into simple, polished, and engaging content for Janbask Training.


Comments

  • T

    Tobias Scott

    Is machine learning part of AI?

     Reply
    • logo16

      JanbaskTraining

      Hi, you can visit the official website of JanBask training to get registered or else you can mail us your information at help@janbasktraining.com. Thanks!

  • B

    Brady Green

    Right now I am doing BCA. From now on, how can I plan to grow my career in machine learning?

     Reply
    • logo16

      JanbaskTraining

      Hi, Thank you for reaching out to us with your query. Drop us your email id here and we will get back to you shortly!

  • C

    Clayton Adams

    Please do suggest some reliable institution where I can learn the technical basics of machine learning.

     Reply
    • logo16

      JanbaskTraining

      Hello, JanBask Training offers online training to nurture your skills and make you ready for an amazing career run. Please write to us in detail at help@janbasktraining.com. Thanks!

  • F

    Francisco Baker

    I am not very familiar with coding. Is it necessary to learn Java, Python or C + + to adapt to a machine learning career?

     Reply
    • logo16

      JanbaskTraining

      Thank you so much for your comment, we appreciate your time. Keep coming back for more such informative insights. Cheers :)

  • Z

    Zander Gonzalez

    Well informative post, must read if interested in growing a career in machine learning.

     Reply
    • logo16

      JanbaskTraining

      Hi, Thank you for reaching out to us with your query. Drop us your email id here and we will get back to you shortly!

  • E

    Erick Nelson

    I have read that machine learning is also known as Artificial Learning? Is it true?

     Reply
    • logo16

      JanbaskTraining

      Thank you so much for your comment, we appreciate your time. Keep coming back for more such informative insights. Cheers :)

  • W

    Walter Carter

    Can you share the process of joining your institute to pursue a Machine learning engineer course?

     Reply
    • logo16

      JanbaskTraining

      Hello, JanBask Training offers online training to nurture your skills and make you ready for an amazing career run. Please write to us in detail at help@janbasktraining.com. Thanks!

  • D

    Daxton Mitchell

    I have just completed my graduation. Can I also apply for a Machine learning job?

     Reply
    • logo16

      JanbaskTraining

      Hi, Thank you for reaching out to us with your query. Drop us your email id here and we will get back to you shortly!

  • C

    Cash Perez

    Well, the article is really helpful, earlier I was confused about the roles and responsibilities of a Machine engineer. But, now I am clear!

     Reply
    • logo16

      JanbaskTraining

      Hi, Thank you for reaching out to us with your query. Drop us your email id here and we will get back to you shortly!

  • M

    Martin Roberts

    What’s the cost of Machine learning engineer course at your institute?

     Reply
    • logo16

      JanbaskTraining

      Hi, you can visit the official website of JanBask training to get registered or else you can mail us your information at help@janbasktraining.com. Thanks!

  • J

    Julian

    Is the Machine Learning course difficult?

     Reply
    • logo16

      JanbaskTraining

      With the right tutor and course road map, you can easily learn Machine Learning.

  • J

    Jackson

    Why go for Machine Learning?

     Reply
    • logo16

      JanbaskTraining

      You can find a lot of career prospects ahead if you go for this course.

  • C

    Carter

    Do you provide a Machine Learning course?

     Reply
    • logo16

      JanbaskTraining

      You can find a lot of career prospects ahead if you go for this course.

  • H

    Hudson

    Easy to understand. Quite a helpful blog!

     Reply
  • H

    Hunter

    Great insight on Machine Learning. Can I know more about the Machine Learning course?

     Reply
    • logo16

      JanbaskTraining

      Sure! Please share your email so that we can get in touch with you and enlighten you regarding the Machine Learning course.

  • G

    Grayson

    Can I learn Machine Learning in detail from YouTube tutorials?

     Reply
    • logo16

      JanbaskTraining

      You can surely have a great insight about Machine Learning from YouTube Tutorials but getting enrolled for courses can help you have an expertise and be industry-ready.

  • C

    Caleb

    Do you provide Machine Learning certifications?

     Reply
    • logo16

      JanbaskTraining

      Yes, we provide full-fledged Machine Learning courses and certify students who prove their meticulousness for the same.

  • A

    Alfred

    I have done a Machine Learning course. Am I industry-ready?

     Reply
    • logo16

      JanbaskTraining

      It is better to have a live-project experience to be ready for the industry. The basic experience is one of the most important requirements in the industry.

  • J

    Jaxon

    Can I have a well-paying career in the industry?

     Reply
    • logo16

      JanbaskTraining

      Yes, if you take up the Machine Learning course and learn it at an expert level, you can have an extraordinary career in the field.

  • C

    cooper

    Can I do a job in MNC if I do Machine Learning courses?

     Reply
    • logo16

      JanbaskTraining

      Many giants of the industry are aligning themselves with the latest technology. There are various career options available in big companies in this field.

  • E

    Everett

    How can I get a better idea about the Machine Learning course of study?

     Reply
    • logo16

      JanbaskTraining

      Please drop your email so that we can email you details about the course of study.

Trending Courses

salesforce

Cyber Security

  • Introduction to cybersecurity
  • Cryptography and Secure Communication 
  • Cloud Computing Architectural Framework
  • Security Architectures and Models
salesforce

Upcoming Class

1 day 15 Nov 2024

salesforce

QA

  • Introduction and Software Testing
  • Software Test Life Cycle
  • Automation Testing and API Testing
  • Selenium framework development using Testing
salesforce

Upcoming Class

0 day 14 Nov 2024

salesforce

Salesforce

  • Salesforce Configuration Introduction
  • Security & Automation Process
  • Sales & Service Cloud
  • Apex Programming, SOQL & SOSL
salesforce

Upcoming Class

6 days 20 Nov 2024

salesforce

Business Analyst

  • BA & Stakeholders Overview
  • BPMN, Requirement Elicitation
  • BA Tools & Design Documents
  • Enterprise Analysis, Agile & Scrum
salesforce

Upcoming Class

1 day 15 Nov 2024

salesforce

MS SQL Server

  • Introduction & Database Query
  • Programming, Indexes & System Functions
  • SSIS Package Development Procedures
  • SSRS Report Design
salesforce

Upcoming Class

1 day 15 Nov 2024

salesforce

Data Science

  • Data Science Introduction
  • Hadoop and Spark Overview
  • Python & Intro to R Programming
  • Machine Learning
salesforce

Upcoming Class

8 days 22 Nov 2024

salesforce

DevOps

  • Intro to DevOps
  • GIT and Maven
  • Jenkins & Ansible
  • Docker and Cloud Computing
salesforce

Upcoming Class

4 days 18 Nov 2024

salesforce

Hadoop

  • Architecture, HDFS & MapReduce
  • Unix Shell & Apache Pig Installation
  • HIVE Installation & User-Defined Functions
  • SQOOP & Hbase Installation
salesforce

Upcoming Class

2 days 16 Nov 2024

salesforce

Python

  • Features of Python
  • Python Editors and IDEs
  • Data types and Variables
  • Python File Operation
salesforce

Upcoming Class

16 days 30 Nov 2024

salesforce

Artificial Intelligence

  • Components of AI
  • Categories of Machine Learning
  • Recurrent Neural Networks
  • Recurrent Neural Networks
salesforce

Upcoming Class

9 days 23 Nov 2024

salesforce

Machine Learning

  • Introduction to Machine Learning & Python
  • Machine Learning: Supervised Learning
  • Machine Learning: Unsupervised Learning
salesforce

Upcoming Class

1 day 15 Nov 2024

salesforce

Tableau

  • Introduction to Tableau Desktop
  • Data Transformation Methods
  • Configuring tableau server
  • Integration with R & Hadoop
salesforce

Upcoming Class

2 days 16 Nov 2024

Interviews